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Abstract. Assuming the existence of a (possibly energy-dependent) local potential satisfying 
5," IV(rHr2 dr < a, the off-shell partial-wave amplitudes in the Born approximation, 
y ( p , ,  p z ) ,  are expressed explicitly in terms of the on-shell &(k, k) provided that p ,  + p 2  < 2k. 
A method is suggested for extending the results to p ,  + p 2  > 2k. 

1. Introduction 

To use the Faddeev equations for the study of three-particle interactions at low energies 
it is necessary to know the two-body scattering amplitudes off the energy shell. These are 
not uniquely specified by the on-shell amplitudes, which can be measured experimentally, 
unless some assumption is made about the nature of the two-body interactions. The 
most reasonable assumption is that these interactions should be described by short-range 
local potentials, possibly energy-dependent. 

The off-shell amplitude is determined by the Lippmann-Schwinger equation which 
does not involve the potential function V ( r )  directly but only via the off-shell Born 
approximation J((p p z )  defined by (1.1). Because of the existence of V(r),  however, the 
latter functions are not independent, and the purpose of this paper is to give an explicit 
procedure to determine them from the on-shell Born approximation y(k, k), 
1 = 0,1,2,. . . , at a given energy k 2 ,  so that the J((k, k) parametrize the potential. 

The notation we use is the following: for the potential V ( r )  the off-shell Born approxi- 
mation is 

so that the scattering amplitude in the Born approximation is 

m 

fB(P: +P:  - 2PIPZ cos e) = 1)&(Pl9 PZ)P,(COS 0). (1.2) 
1=0 

On-shell, with p1 = p 2  = k, 

w, k )  = @(k) /k  (1.3) 

where 6F(k) is the Born approximation to the Ith phase shift. If we suppose the &(k, k) 
to be given for I = 0, 1,2, . . . , then by taking (1.2) with p1 = p 2  = k we see thatfB(K2) 
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is given for 0 < K 2  < 4k2. Inverting (1.2) to obtain 

W P ~ ,  P J  = 1 fB@: + p i  - 2p1p2p)Pl(p) dp, 
1 

- 1  
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( 1.4) 

we see that v(pl, p 2 )  is known in principle provided that 

p1+p2 < 2k. (1.5) 

Explicit expressions giving v(pl, p 2 )  in terms of the &(k, k) are derived in $4 2 and 3 and 
we shall see later in this section that a sufficient condition for their validity, subject to 
(1.5), is that 

Since 
m 

fB(K2) = - K -  1 sin K r  V(r)r dr 
0 

(1.7) 

we see that if V(r )  never changes sign then (1.6) is just the condition that the Born approxi- 
mation to the scattering amplitude should exist in the forward direction, 8 = 0. 

To consider the region p1 + p 2  > 2k we must restrict the potential further to ‘short- 
range’ potentials. By this we mean that there exists a > 0 such that 

lim exp(ar)V(r) = 0. 
r-rw 

For such potentials we see from (1.7) thatfB(K2) is an analytic function in the region 
given by -a < Im K < a which includes the positive real K 2  axis. HencefB(K2) is 
uniquely determined for all K 2  > 0 by analytic continuation from the region 
0% K 2  < 4k2, which then determines the K(pl ,  p 2 )  by (1.4). 

Without condition (1.8) fB(K2) is not uniquely specified for K 2  > 4k2 so that 
y(pl, p 2 )  is indeterminate for p1 + p 2  > 2k. It may be noted that Newton’s solution to 
the inverse scattering problem (Newton 1962) eqploits this indeterminacy in constructing 
an infinite number of potentials, each of which gives the correct phase shifts at a given 
energy. None of these potentials is short-range in the above sense and all give a scattering 
amplitude singular at K 2  = 4k2. 

The method of analytic continuation to be used is a matter of personal preference. 
In $ 4 we suggest a method based on Pad& approximants which extends the region of 
convergence of the series derived in $ 2  and gives high accuracy when tested on the 
Yukawa potential. 

The equation we use to calculate the off-shell amplitudes is an extension of a result 
derived in an earlier paper (Warburton 1972, hereafter referred to as I), where relations 
between the on-shell Born approximations at different energies and angular momenta 
were derived on the assumption of the existence of an energy-independent local potential. 
Those results in I relevant to the present problem are recalled in $ 2  but re-expressed 
so as to be applicable to energy-dependent potentials if necessary. For such an energy- 
dependent potential K(q, q) no longer necessarily equals 6r(q)/q for q # k so that each 
energy k2 has to be considered separately, the off-shell amplitude &(pl, p 2 )  thus being 
a function also of k. 

Rigorous mathematical justification of the results in $ 2  has been given in I and 
is omitted here. As we shall see, the condition for the validity of $ 3 is the same as that 
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for 4 2 so that both sections merely require that the potential should satisfy (1.6). For 
the method of Q 4 to be applicable we should need also condition (1.8) as discussed above. 

The results may be extended for suitably large 1 to potentials singular at r = 0. 
We need only consider potentials vanishing identically for r > a =- 0, since other 
potentials may be expressed as the sum of such a potential and another potential 
satisfying (1.6), and the results are linear in the potential. If 

IV(r)l.G Ar-" (0 < I  < a,n 2 3) (1.9) 

then we can derive the results by use of the bound 

Ijl(pr)l < @r)'/1.3.5 . . . (21 + 1). 

1 > 1, = [+(n-3)] 

(1.10) 

From (1.1) we see that the &(pl, pz) exist provided that 

(1.11) 

and we can define a reduced Born scattering amplitude 

(fB(Kz)Yed = - K -  (1.12) 

With 

K 2  = p: +p: - 2 ~ 1 ~ 2  COS 8 

it is easy to see, by using the identity 
50 

sin K r / K r  = 1 (21+ l)jl(plr)jl(pzr)Pl(cos e), 
1=0 

(1.13) 

that the right-hand side of (1.12) differs from 

5 (21+ l)&(Pl, PZ)PI(CO~ 8) 
I = l o +  1 

only by a polynomial in cos 8 of degree 1,. Hence the arguments of §§ 2 and 3 may be 
applied to (jB)red provided that 1 > 1,.  

2. The on-shell amplitude 

As discussed in 0 1, knowledge of Vt(k, k) for all I and any k implies knowledge of VJq, q) 
for all m and any q in [0, k]. For an energy-independent potential this equals 6r(q)/q, 
the on-shell amplitude. Explicitly, if we set 

p' = 1 -(1 -p)qZ/kZ (2.1) 

then 

2 (21 + 1) m, q)P,OL) 
5 

l = O  

= fB(2q2( 1 - p)) = fB(2k2( 1 - p')) = (2m + 1) VJk, k)Pm(p'). (2.2) 
m = O  



The of-shell Born approximation for local potentials 

Hence 

where 
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(2.3) 

= (2m+ l ) ( m + l +  l ) - l a ' P ~ ! ~ l ~ - l ) ( l  - 2 4  (2.5) 

(the Rj, vanish identically for m < I ) .  The properties of the R,, may be deduced from 
those of the Jacobi polynomials (Szego 1939). R,,(a) is a polynomial in a of degree m 
with an I-fold zero at a = 0 and also vanishing at a = 1 unless m = I (as can be seen by 
setting q = k in (2.3)). They are easily generated via the recurrence relation, valid for 
m 2 1+2, 

( m -  I)(m+I+ l)(m- 1)(2m+ l ) - 'Rj , , (a)  

= [m(m-1)(1-2a)+l (I+  l ) ] R j , m - l ( a )  

- m(m+ I -  l ) ( m -  I -  2)(2m - 3)-'Rj, ,-  z(a) (2.6) 

starting from 

= 

Rl , l  + l (a )  = (21 + 3)a'( 1 - a). 

The condition 0 e q < k implies 0 < a < 1 where the Jacobi polynomials, and hence 
the RI,,  fall off as m-lI2 as m + CO. Convergence of (2.3) is thus rapid for short-range 
potentials, as is shown numerically for a typical case in table 1 where we use a = 4 and 
find accuracy to four decimal places after seven terms of the series. 

Table 1. Values of E:=, Rf,,,(i)Vm(l, 1) for V ( r )  = -e-'/r. 

M I = O  I = 1  1 = 2  1 = 3  

- - 0 0,4024 - 
1 0.5577 0.0518 - - 

3 0.5485 0.1006 0.0171 0.0013 
5 0.5494 00984 0,0215 0.0046 
7 0.5493 00%6 0.0212 0.0049 

This rate of convergence is found to be typical for short-range potentials but the 
convergence is slower in the following cases : 

(i) Large k2. Here the V,(k, k )  fall off more slowly as m -+ CO. Each term of (2.3), and 
hence the sum to N terms, tends to zero as k2 -+ CL), yet the sum &(q, q) is independent 
of k2. 

(ii) Long-range potentials, for the same reason, since by re-scaling the Schrodinger 
equation the range can be reduced at the expense of increasing k2. 

(iii) Small q2. For small a the R,,(a) fall off more slowly as m + CO. From (2.4) we 
see that 

IR,(a)l < 2m+ 1 (2.8) 
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but this bound is only achieved (for m # 1) if both a = 0 (ie q2 = 0) and 1 = 0. In this 
case we have, from (2.3), 

which will always be the most slowly convergent case. For I # 0, &(q,q) tends to zero 
as 4 -+ 0, as does Rlm(q2/k2) ,  so that no difficulty arises (for short-range potentials both 
vanish as q2'). The case 1 = 0 merits closer attention for a # 0. We may integrate (2.4) 
explicitly to obtain, for m 2 1, 

(2.10) R,,(a) = & - l ( P m - l ( l  - 2 ~ ) - P ~ + ~ ( I - 2 a ) )  

IP"(X)l < (2/zn)"2( 1 - x2)- l'2, 

IRom(a)l < [8z(a3 - a')]- "2[(m- 1)- l i 2  +(m+ 1)- ' I 2 ] .  

whence, using 

for m 2 2 

(2.1 1) 

This bound reflects the asymptotic behaviour of R,, as m + CO and shows how Rom(a) 
can increase as a -+ 0 for fixed m, although (2.8) gives a limit to that increase. 

3. The off-shell amplitude 

If we now set 

with the particular choice 

4 = %PI + P 2 )  

then, proceeding as in i j  2 we find 

since 

where 

= p1p2/q2 < 1 .  

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.3) is the same series as (2.3) apart from the factor (- It follows that all questions 
of convergence of the off-shell series have already been answered by the discussion of 
the convergence of the on-shell series in I, ie that (3.3) converges provided that (1.6) is 
satisfied. 

We note the following properties of the series (3.3) : 
(i) Each term behaves as k1p2)' as either p1 or pz -+ 0 as is the case for Vf(p,, p2) 

for short-range potentials, by (1.1). 
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(ii) Only the V,,,(q, q)  (and hence the V,(k, k) by (2.3)) for m 2 1 are required. 
In view of the similarity of the series (3.3) and (2.3) there is no need to give numerical 

examples : the rates of convergence are exactly the same for appropriate values of the 
parameters. The slowly convergent region of small a corresponds to either p1 or p ,  
being small, in which case i((pl, p , )  will be small, as discussed in (i) above, unless I = 0. 

To summarize, evaluation of i((pl, p , )  from the V,(k, k) for m 2 1 involves two steps. 
Firstly one uses (2.3) to evaluate the Vm(q, q)  for m 3 1 where q = + p z ) ,  and then one 
uses (3.3) to deduce the y(pl, p, ) .  Both these steps involve the same functions &(a). 
To combine the steps into a single series would involve more computation, owing to 
the much greater complexity of the series coefficients. 

4. Continuation to higher energies 

By the use of (3.3) we can deduce the V,(p,, p , )  from the V,(q, q)  for any p1 and p ,  by a 
suitable choice of q. If, however, our starting point is the y(k, k) for a given value of k 
then we can only deduce (via (2.3)) the y(4,4) for 4 < k, and hence the V,(pl, p , )  for 
p1 + p ,  < 2k, by (3.5). If we try to use (2.3) for 4 > k for potentials only satisfying 
(1.6), we find that the series in general diverges. This is because as m -, 00 for a > 1, 
the &(a) increase as m-'', exp(ym) where cosh y = 2a- 1. (Szego 1939). For short- 
range potentials, satisfying (1.Q the Vm(k, k) fall off exponentially, giving an extension to 
the region of convergence as discussed in I. In principle we could repeat the procedure 
using (2.3) for higher and higher k, but in practice errors build up very rapidly. 

Instead we suggest that to continue the analytic function &(q, q )  to the region q > k 
one should sum the series (2.3) by means of the generalizations of the Aitken d2 process 
developed by Shanks (1955). In this method one replaces a sequence of partial sums 
So, S,, S,, . . . (tending to a limit T) by the sequence of Pade approximants T,, T I , ,  T,,, . . . 
defined below. This sequence in general converges in a wider region than the original 
sequence. In the present case we find numerically that the Pad6 sequence converges 
for all q > k, although more slowly as q + CO. Typical results are displayed in table 2. 

Table 2. Values of SM = E:=, R,,(2.5)Vm(1, 1) for V(r )  = -e-'/r, and the sequence of Pade 
approximants Ti, i = 0, 1,2,3. 

l = O  f = 1  

M S M  Pad6 M SM Pade 

0 04024 04024 1 0.2588 0.2588 
2 0.8899 0.2494 3 1.169 0.0899 
4 3.947 0.2404 5 7.517 0.0878 
6 24.67 0.2398 7 54.07 0.0877 

The rate of convergence for q < k is also improved, except near q = 0. Of course, any 
other method of analytic continuation would lead to the same results. The Pade 
approximants used are the diagonal elements of the Pad6 table Tij .  These are easily 
calculated iteratively by the so called Q algorithm (Wynn 1966). 
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5. Discussion 

From a practical point of view the results we have obtained are most readily applicable 
for large values of the angular momentum 1. As 1 increases we see from (1.1) that V;(p,, p z )  
decreases so that the Born approximation becomes a better and better approximation 
to the partial-wave amplitude, both on and off the energy shell. We can thus suppose 
that the V;(k, k) are known experimentally for I 2 M, say. As (2.3) and (3.3) only involve 
m 2 1 it follows that the V;(pl, pz) for 1 2 M can be deduced immediately and be taken 
as good approximations to the off-shell partial-wave amplitude. Even taking M = 1 is 
likely to give a better approximation to these amplitudes than neglecting them entirely, 
as is often done. 

For I < M we can regard the &(k, k) as M parameters of the potential, to be deter- 
mined by the requirement that the solution of the Lippmann-Schwinger equation 
should yield the correct phase shifts 6,(k), . . . ,6,- ,(k). However, it may be pointed 
out that, in principle, equation (3.6) of I gives an explicit expression for the t;(k, k) for 
1 < M in terms of the V,(q,q) for m 2 M. 
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